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Abstract
It is well established that nucleation of metal clusters on oxide and halide
surfaces is typically dominated by defect sites. Rate equation models of defect
nucleation have been developed and applied to these systems. By comparing
the models with nucleation density experiments, energies for defect trapping,
adsorption, surface diffusion and pair binding have been deduced in favourable
cases, notably for Pd deposited on Ar-cleaved MgO(001). However, the defects
responsible remain largely unknown. More recently, several types of ab initio
calculation have been presented of these energies for Pd and related metals on
MgO(001) containing several types of surface defect; these calculated values are
surveyed, and some are widely divergent. New rate equation nucleation density
predictions are presented using the calculated values. Some calculations, for
some defect types, are much closer to experiment than others; the singly charged
F+

s centre and the neutral divacancy emerge as candidate defects. In these
two cases, the Pd/MgO(001) nucleation density predictions agree well with
experiment, and the corresponding surface defects deserve to be taken seriously.
Energy and entropy values are discussed in the light of differences in calculated
charge redistribution between the metal atoms, clusters and (charged) surface
defects, and (assumed or calculated) cluster geometries.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thin metal clusters supported on oxide surfaces have many practical applications due to their
catalytic, magnetic and electric properties; experiment and theory have given rise to a large
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literature (see, e.g. [1–3]). A few years ago, two of the present authors were involved in
trying to understand experiments on defect-induced nucleation of metal growth on alkali
halide surfaces [4], and on alkaline earth oxides [5], the most recent experiments having
used atomic force microscopy (AFM) [6]. A rate equation treatment showed that several
energies associated with defect-influenced nucleation and growth can be determined, for the
specific case of Pd/MgO(001); some calculations were done [5, 6] to compare energy values
with experiment. This rate equation treatment is briefly reviewed in section 2.

In recent years, quantum calculations of the binding of metal atoms and clusters to oxide
and halide surfaces have progressed, giving a stimulus for experimental determination of
interaction parameters. Several groups have presented calculations of relevant energies for
several metal deposits, including Pd, Pt, Ag and Au on MgO and NaCl, over the last few years.
However, as we discuss in section 3, the results have been rather widely discrepant; there are
also several types of surface defect to be considered as candidates for nucleating agents. We
tabulate some of these results, comment on the level of agreement, and give possible reasons
for discrepancies, centring on the role of charge redistribution at surface defects. Finally, in
section 4, we present new rate equation calculations using selected calculated energies for
specific surface defects, in the case of Pd/MgO(001), to illustrate the range of experimental
predictions and to discuss the way forward. Two particular surface defects, the F+

s vacancy
and the neutral divacancy, emerge as candidate defects that deserve to be taken seriously in
future.

2. Rate equation models of defect-influenced nucleation

Rate equations have been developed to analyse nucleation and growth on perfect substrates
over a number of years [7–9]. Defects have been incorporated at the cost of at least two
additional material parameters, the trap density nt , and the trap energy Et; this also involves
doubling the number of rate equations, as both trapped and free species must be considered in
parallel. These developments have been reviewed recently in the context of quantum dots [10]
and the early stages of thin film growth [11].

Here we give a qualitative account and some examples. We focus on the rate equation
for the nucleation density, where the traps are attractive surface point defects, in the simplest
case where just one type of trap is present, and that dimers and larger clusters can neither
diffuse, nor leave the traps. Within this model, we then estimate trapping and other energies
by comparison with experiment, as applied to Pd/MgO(001).

2.1. Rate equation models for perfect substrates

There are two extreme ways of using rate equations to estimate the nucleation density of
clusters on substrates. In previous work it has been shown that the important material
parameters can be isolated by dividing the clusters sharply into three categories: single mobile
adatoms, sub-critical clusters, and absolutely stable clusters [7–9]. Steady-state conditions
apply approximately after a short time, where the adatom concentration is constant; then the
concentration of critical clusters, which can be evaluated using local equilibrium arguments,
yields the nucleation rate and maximum cluster density.

By these means the (in principle infinite) set of ordinary differential equations (ODEs) can
be reduced to a coupled pair of nonlinear algebraic equations for the adatom density n1 and the
maximum or saturation density nx of 2D or 3D stable clusters. Coupled to a suitable growth
equation, dependent on cluster shape, these two densities can be calculated as a function of the
deposition flux, F (or rate R in the older literature), and substrate temperature T . The critical
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nucleus size i and the regime of condensation are both determined self-consistently as an output
of an iterative calculation for given input adsorption (Ea), diffusion (Ed) and binding (Eb)

energies [7–11]. In these calculations, lateral pair binding is typically assumed, so the cluster
binding energy (Ei) is made up of the number of lateral bonds in the cluster (bi) as Ei = bi Eb.
However, this restriction is not required; we simply (sic!) need to know the energies of all
clusters E j that could possibly be the critical cluster. Needless to say, such energies are not
known in the general case, making the lateral pair-binding model the best starting point in
the absence of further information. We modify this approach here in section 4, in the light of
recent theoretical estimates described in section 3.

Alternatively, the full time-dependence can be retained, and the coupled ODEs solved
with the dose θ (or deposition time, t , where θ = Ft) as the independent variable. This
again is simple in principle. But the problem is that we really do need to know all energies
and pre-exponential factors in order to calculate anything concrete, except in the case of
i = 1, when (D/F) is often the only important parameter. These unknown factors include
the frequency associated with the adatom diffusion constant D, as well as the various capture
numbers σ that self-consistently determine the reaction rates on the surface. The net result is
that this method has been attempted only in a few cases where there is a hope of identifying the
corresponding processes by experiment. Typically, the important parameters are lumped rather
than elementary quantities; the algebraic method is well suited to identifying such parameters
in specific cases.

2.2. Extension to nucleation on defects

Nucleation on point defects can be visualized schematically as in figure 1, where we separate
the adatoms and clusters on the traps (n1t and nxt ) from those on the perfect terrace (n1 and
nx ). New nucleation can occur at both perfect and defect sites, but for attractive defects, the
numbers are biased in favour of the latter. We can see this via the rate equation for trapped
adatoms, which can be written [5, 6]

dn1t/dt = σ1t Dn1nte − n1tνd exp(−(Et + Ed)/kT ), (1)

where nte is the number of empty traps = (nt − n1t − nxt) and σ1t is the capture number of
traps for adatoms. After a short time, dn1t/dt reaches a steady-state value of zero; inserting
the usual expression for the diffusion constant D = (νd/4) exp(−Ed/kT ) in monolayer (ML)
units, we deduce

n1t/(nt − nxt) = A/(1 + A), with A = n1Ct exp(Et/kT), (2)

where Ct = σ1t/4 is an entropic constant, set equal to 1 in the published calculations to date.
This equation (2) shows that the traps are full (n1t = nt − nxt) in the strong trapping limit,
whereas they depend exponentially on Et/kT in the weak trapping limit, as expected. This is
thus a Langmuir-type isotherm for the occupation of traps; the trapping time constant to reach
this steady state is very short unless Et is very large; but if Et is large, then the traps are full
anyway.

The total nucleation rate is the sum of the nucleation rates on the terraces and at the defects.
The nucleation rate equation becomes, without coalescence,

dnx/dt = σi Dn1ni + σit Dn1nit, (3)

where the second term is the nucleation rate at defects, and nit is the density of critical
clusters attached to defects, σit being the corresponding capture number. The two terms
on the right-hand side of (3) are in the ratio Bt = 1 + At. As argued in somewhat more detail
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Figure 1. Model for nucleation at randomly placed point defects with variables n1: number density
of free adatoms; nt : density of traps; n1t: density of trapped adatoms; and nx t : density of trapped
stable clusters (clusters with atom numbers >i). The total density of stable clusters (trapped and
free) is nx . See text for discussion.

elsewhere [10, 11], in the simplest case where the traps only act on the first atom which joins
them, and entropic effects are ignored, we have

At = n1t/n1 = (nt − nxt)A/[n1(1 + A)]. (4)

The model is completed by using links (2) and (4) between At , A, and n1 in the modified
algebraic equation for nx , resulting in published curves [5, 6] repeated here in figures 2 and 3
for clarity. Figure 2 shows the behaviour for a large T range, for nt = 2.65 × 10−3 ML,
Et = 1.5 eV, Eb and Ea = 1.2 eV, and Ed in the range 0.2–0.4 eV, with a value of νd = 3 THz;
this is the value that is consistent with the vapour pressure of bulk Pd; we return to this topic
in section 4. Comparison with Pd/MgO(001) AFM experiments [6] allowed several energies
to be deduced. To reproduce the long plateau region, where nx = nt , the trapping energy Et

has to be high, �1.5 eV, as shown in figure 3(a), and the diffusion energy Ed must be low,
�0.3 eV (figure 2). A low value of Ed is needed so that the adatoms can migrate far enough
at low T to reach the defect sites before forming stable pairs. This low-T case is discussed
further in section 4.

With such a high value of Et , something else eventually intervenes at high T . This feature
is addressed in figure 3(b). Venables and Harding [5] explored two possibilities, assuming that
an ad-dimer forms a stable pair at least up to T ∼= 600 K: one possibility is that condensation
becomes incomplete at this point, but that pairs remain stable, i = 1. This would indicate a
lower limit to the value of Eb, with a moderate value of Ea being the important parameter.
The other possibility was the inverse, where the first process that intervenes is the transition
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Figure 2. Arrhenius representation of Pd island density Nx (cm−2) at 0.1 ML coverage on Ar-
cleaved Mg(001): the solid line is the model for Ed = 0.2, Et = 1.5, Eb = 1.2 and Ea = 1.2 eV,
plus curves for Ed = 0.3 (dashed) and 0.4 eV (dotted lines), and experimental data from [6]. The
inset shows the model for i = 3 applicable at high temperatures, using the same notation as figure 1,
after [10]; see text for discussion.

to i = 3 (as a consequence of the pair-binding model in the square (001) geometry; see the
inset in figure 2), i.e. the high-T data determines Eb, and only at yet higher T is condensation
incomplete. Thus the limiting process becomes the breakup of the cluster (on a trap), rather
than removal of the adatom from the trap. The value of Et was shown not to be important,
provided it is high enough.

These two possibilities had different consequences for other measurements in the high-T
region; in particular the condensation coefficient is very different for the two cases [5, 6].
Incomplete condensation was observed via AES measurements (triangles in figure 2), and the
flux-dependent island density measurements [6] were also in agreement only with the second
case. Figure 3 indicates that i = 1 at low T , but that the transition to i = 3 is responsible,
within the model, for the initial drop-off at high T , followed by incomplete condensation at
the highest T for a good fit. The plots with Ed = 0.2 eV corresponding to the ‘best fit’, added
in figure 2, indicate that both Ea and Eb are around 1.2 eV. Note that the value of Eb is an
‘effective’ value implied by the pair-wise additive model employed; we return to this point in
section 4.

3. Recent calculations of relevant energies

3.1. Classical atomistic simulation on perfect MgO(001) substrates

There are many schemes used to calculate interaction energies, which can then be used to
relate the above ‘experimental’ values to ab initio theory, and several papers have addressed
this issue since the experiments and first models [5, 6] were published. Two of the present
authors [5] used classical atomistic simulation to calculate the energies Ea, Ed and Eb and
some defect parameters, which assumes that the interactions between atoms and ions can be
described using a central-force pair potential.
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(a) (b)

Figure 3. (a) Nucleation density predicted with trap density nt = 2.65 × 10−3 ML, Ed = 0.2 eV,
Ea and Eb = 1.2 eV, and various values of trap energy Et , as indicated; (b) nucleation density
predicted with nt = 2.65 × 10−3 ML, Ed = 0.2 eV, Et = 1.5 eV and Ea = 1.2 eV, for two
values of the lateral pair binding energy Eb = 1.0 and 1.2 eV. The data points involving incomplete
condensation are indicated by triangles, complete condensation by squares, as in figure 2. See text
for discussion.

The interaction between the metal atoms and the ions was first calculated within the
Dirac–Fock approximation, using suitable wavefunctions. It is important to calculate the
oxide wavefunctions using a local potential to represent the effects of the lattice, because the
O2− ion is not stable in free space. Then estimates for the correlation and dispersion terms
were added. Metal polarizability was included in the shell model. Interactions between metal
atoms in the dimer were fitted to a Morse potential, resulting in potential parameters given in
equation (5) for Pd2 [12] and (6) for Ag2 [13]:

For Pd2: V (r) = 1.220 [eV](1 − exp(1.420 18 [Å−1] (2.4800 [Å] − r))); (5)

For Ag2: V (r) = 1.784 [eV](1 − exp(1.435 11 [Å−1](2.5303 [Å] − r))). (6)

At that time, some local density approximation (LDA) calculations were available for the
simpler configurations [14–16], and comparison with [5] is shown in table 1. The biggest
discrepancy is for Pd over the Mg2+ site; however, the LDA calculations had a rather large
basis-set superposition correction which reduced their accuracy. Overall the agreement is
remarkably good, given that it is certainly unreasonable to claim absolute accuracy <0.1 eV.
Venables and Harding [5] also calculated the behaviour of monomers and dimers. This enabled
them to compare the adsorption and diffusion energies, which are shown and compared with
early density functional theory values in table 2. From this body of work we can be fairly clear
that the diffusion energy for both Pd and Ag is rather low, implying rapid adatom diffusion at
all temperatures studied experimentally [6].
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Table 1. Calculated adsorption energy (eV) of Pd and Ag on MgO(001).

Reference Reference

Pd [5] [14, 15] Ag [5] [16]

Over O2− 0.85 0.81 Over O2− 0.66 0.66
Over Mg2+ 0.24 0.59 Over Mg2+ 0.22 0.36
Over hollow 0.58 0.58 Over hollow 0.56 0.53

Table 2. Calculated adsorption and diffusion energies (eV) of monomers and dimers on MgO(001).

Pd [5] Ea Ed Ed [15] Ag [5] Ea Ed Ed [16]

Monomer 0.85 0.2 0.23 Monomer 0.66 0.1 0.13
Dimer 1.47 0.3 Dimer 1.27 0.3

3.2. Calculations of adatom adsorption, defect trapping and pair-binding

Since this work several papers have been published using a variety of methods, and most
recently these have considered trapping at an increasing array of surface defects. The first paper
was a cluster calculation that specifically considered the charge state of surface vacancies [17];
we return to this paper along with more recent papers from the same group later in section 3.3.

The next papers were several sets of density functional theory (DFT) calculations,
including the generalized gradient approximation (GGA) extension, of adsorption, trapping
and pair-binding energy values for several noble and transition metals [18–20]. The first of
these was an update of reference [14], with revised energy values for Cu, Ag, Ni and Pd [18]
in Fs and F r

s centres. The second [19] was a study of Pt, and the third studied several noble
and transition metal elements [20]. Here, we focus on the small square of the periodic table
containing Pd, Pt, Ag and Au, and comment on the values obtained for Ea, Eb and the trapping
energies Et (monomers) and of E2t (dimers) at a particular type of surface vacancy, the Fs

centre. This centre is caused by removing a neutral oxygen atom, and hence contains two
electrons trapped near the vacancy at the MgO(001) surface. This last paper also commented
on possible interpretations of experiments on Pd/MgO [6]; we return to this topic in section 4.

The study of Pt/MgO(001) [19] showed that the trapping energy of Pt at the Fs centre
was rather large. In the wide-ranging paper that followed [20], the same methods were used
to study several transition metals and a single type of defect trap, in an attempt to generalize
the implications. Some of these values are reproduced in table 3. The authors note that the
metal atoms are strongly bound to the (charge neutral) Fs centre, because the metal atoms
trap electrons from the neighbourhood of the vacancy, leading to a strong surface dipole. This
effect was calculated to be very strong for Pd and Pt, and less strong but still sizeable for Ag
and Au. The same effect is at work in weakening the pair bond of Pd2 and Pt2 from their free
space values, most extremely in the case of Pd2, which was estimated to be unbound on the
perfect surface and almost unbound at the defect site. Note also that the calculated adsorption
energies Ea for Pd and Pt are high, higher than the value for Pd in table 2, but bracketing
the ‘experimental’ value of reference [6]; but for Ag the situation is reversed, arguably within
error, which is probably around ±0.2 eV. Note also that the terrace adsorption energy Ea,
and trapped atom energy Et are very similar in [18] and [20] for the two elements Pd and Ag
that are in both studies; this point was not noticed in [20], but does corroborate their basic
calculation of single adatom energies.
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Table 3. Comparisons of Ea, Eb, Et and E2t (eV) for Pd, Pt, Ag and Au on MgO(001). (Note:
DFT spin-unpolarized calculations from [19, 20], except for the values in round brackets, which are
for a spin-polarized DFT-GGA embedded cluster calculation [18]. Ads: adsorption on the perfect
terrace; F trap: an adatom at the Fs centre; Bind: binding energy of a dimer on the terrace; D trap:
a dimer at the Fs centre.)

Ads: Ea F trap: Et Bind: Eb D trap: E2t

Pd 1.34 (1.35) 2.72 (2.55) −0.03 0.09
Ag 0.53 (0.41) 1.27 (1.31) 1.81 1.86
Pt 2.67 3.83 0.72 −0.14
Au 0.90 2.22 2.15 2.21

There are some other trends exhibited in table 3, and we comment on these in this
paragraph. First, while the trapping and pair binding energies for Pd and Pt imply a large
electron transfer to adatoms and pairs from the defect site, the transfer must be much less for
Ag and Au. Indeed the calculated pair binding energies for the two noble elements in [20]
on the MgO(001) surface are almost the same as the free space values. These are known
experimentally for Ag2 = 1.65 ± 0.06 and Au2 = 2.29 ± 0.02 eV [21, 22]; for Pd2 a much
wider spread of experimental values has been reported, covering a huge range from 0.73 to
1.69 eV [5]; all empirical work and most calculations prefer the lower end of the range, with
all calculations below 1.35 eV [5, 21–26], with the value of 1.22 eV used by two of the present
authors in [5]. For Pt2 the experimental value quoted in [19] is 3.70 ± 0.16 eV to be compared
with the authors’ calculated value of 3.64 eV. Thus the authors of [20] have obtained a sizable
trapping energy for the monomers of all these metals, while finding a weakened pair binding
only for the transition metals (Pt2 and especially Pd2), but not for the noble metals (Ag2 and
Au2). We return to this topic in section 3.3.

Another point is that the diffusion energy for Pd on MgO(001), mentioned only in passing
in [20], is given as Ed = 0.86 eV. We do not know how the authors can obtain this value, other
than possibly by assuming a diffusion path that goes over the Mg2+ site. As we can see by
comparison with figure 2, this value is much too large to agree with experiment. Moreover,
the geometries of almost all the pairs, including Pd2 and Ag2, stick out from the surface [20],
whereas other calculations, including our own, have them lying in the surface plane. We
spell this out in more detail later, but this suggests an unwanted dipole field perpendicular
to the surface in that calculation. The above arguments suggest that relatively long-range
electric fields may not have been adequately relaxed. Or is it the case that the long-range
(radial) relaxation cannot be properly included in periodic boundary condition DFT-GGA
calculations [19, 20], a problem that may be particularly troublesome for ionic crystals.

3.3. Embedded clusters and periodic slabs: small Pd and Ag particles at surface defects

Cluster calculations have a long history, and great credit is due to the Pacchioni group for
having been the first to draw attention to the role of the charge state of the defect as a major
player in the energies of metals at surface defects. In a clear and informative early paper [17]
they gave unambiguous definitions of the Fs, F+

s and F++
s as well as the corresponding Vs

centres. They calculated that the neutral Fs centre, with two electrons at the vacancy, binds
Pd by 1.55 eV, whereas Ag, and the alkali atom Rb, were unbound. The F+

s centre, with one
electron, binds both Pd with Et = 0.77 and Ag with 0.99 eV. The F++

s centre with no electrons
ionizes both Pd and Ag to give Pd+ and Ag+; these species are unbound to the resulting F+

s
centre. All these (Hartree–Fock (HF)-based) results were however obtained from relatively
small MgO clusters, embedded in an array of fixed point charges, so long-range relaxation is
an issue.
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Table 4. DFT-GGA spin-polarized model: energies (eV) of Pd and Pd2 on MgO(001). (Note:
Periodic slab model from [28], except where noted; see text for discussion. The F+

s values are
for an embedded cluster calculation in [28]. The values in round brackets are for a spin-polarized
DFT-GGA embedded cluster calculation in [18]. Terrace: adsorption on the five-fold coordinated
terrace; Step (OH): an adatom or dimer at a four-fold coordinated step (containing an OH group);
Fs, (F+

s ): an adatom or dimer at the neutral Fs (singly charged F+
s ) centre; DiVac: an adatom or

dimer at a neutral di-vacancy. The trapping at the OH ion, at a step, is from [29].)

Terrace Step OH [29] Fs F+
s DiVac

Pd (Ea) 1.36 (1.35) 1.85 2.70 3.99 (3.90) 2.70 (2.62) 3.00
Trap (Et) 0.49 1.31 2.63 (2.55) 1.20 (1.27) 1.64
Pd2(Edim) 1.86 2.02 2.73 1.93 2.41 3.06
Trap (E2t) 0.50 (Eb) 0.66 1.34 0.57 0.91 1.71

The Ag and Pd atoms were found to be essentially unbound on the ‘perfect’ surfaces, with
Ea < 0.01 eV for Ag and Ea = 0.11 eV for Pd on the O2− site; these values are too low. The
group’s first relativistic DFT calculations gave Ea = 0.20 eV for Ag, 0.23 eV for Au, 0.81 eV
for Pd and 1.36 eV for Pt [14]. These values were updated for Pd and Ag [18] as given in
table 3 alongside the values for the DFT-GGA slab calculations [19, 20]; there is thus now
basic agreement between different DFT calculations. It is also notable that other HF-based
calculations of Ea for Ag are very low (∼0.20 eV), with Ed even lower (∼0.05 eV) [27]. It
is not clear what the errors are, but the authors feel that these calculated values are rather too
low, for example by comparison with those given in table 2 [5] and table 4 [18, 28, 29] above.

The next three papers from the group compared two types of DFT-GGA calculation,
embedded cluster models and periodic supercells, for Pd, Pd2 and for small Pd clusters on
MgO(001) [28–30]. All calculations are spin-polarized, allowing for magnetic states to emerge,
enabling the authors to distinguish the triplet ground state (d9s1) of Pd and Pd2 in the gas phase
from the singlet ground state (d10) on the surface. Despite the publication date order, [29]
was completed first, and some of the work is described as preliminary; this paper has effective
core potentials for the Mg2+ ions surrounding the cluster within an outer array of fixed point
charges; thus, when there is a difference, values from [28, 30], which use a more sophisticated
intermediate region of 900 classical polarizable ions [31], are quoted.

The two sets of DFT energies are closely comparable, and several types of defect were
considered: Fs and F+

s centres, divacancies and steps. Selected periodic supercell energy
values [28] are given in table 4, alongside cluster (BP-level) calculations [28, 29], and cross-
checked where possible with [18]. We refer the reader to these papers for further details and
caveats on the methods, all of which relate to the ultimate accuracy that one can expect; we
will be very fortunate if values hold up to ±0.1 eV, so no significance should be attached to the
second decimal place. An important point highlighted in [29] is that the discrepancy between
their binding energy for Pd2, (Eb = 0.46–0.57 eV depending on the details) and that of the
previous DFT calculations [20] of the same quantity (Eb = −0.03 eV) is the very different
geometric configuration of the stable dimer. In [20, table 2] almost all dimers were strongly
angled to the surface plane, with the height of the second atom considerably greater than the
first. The relaxation path of the dimer was symmetry restricted along the path towards the
cation site, at variance with the stable orientation found in both [5] and [28, 29], where the
dimer axis lies closely in the surface plane with both Pd atoms over the oxygen sites. Thus we
attribute the discrepant values for dimers in table 3 as being due to, or at any rate correlated
with, the choice of geometry, coupled with a symmetry-restricted calculation.

In the third paper,one of the present authors produced calculations on Pd nanoclusters [30].
These calculations were able to go far beyond the limited experimental constraints of [6], and
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deduce both configurations and energies of small Pd clusters Pdn up to n = 4. At the Fs centre,
Pd2 has the minimum binding energy 0.57 eV, whereas Pd3 is bound by a further 0.75 eV and
Pd4 by another 1.38 eV [30]. It is notable that these values are approaching the value for
bulk Pd from below. There is a huge amount of detail in this paper, much more than we
can summarize here. In particular, we note that the monomer diffusion energy on the terrace
is given as Ed = 0.34 eV as against 0.23 eV [15], close to the upper limit value deduced
from experiment [6]. Subsequently, we checked the possibility that the other previous value
of Ed = 0.86 eV [20] corresponded to an assumed migration path over the Mg2+ site. We
checked personally [39], and also repeated the slab calculation [30], obtaining 0.82 eV. This
confirms that the adatom properties are very similar in references [20, 28, 30]; the cluster
properties however differ, as discussed above.

4. Further rate equation predictions using calculated energies

4.1. New features of rate equation predictions

In this section we return to the rate equation treatment described in section 2, and show some
predictions for nucleation densities using the theoretical energies discussed in section 3. The
previous treatment was formulated using a simplified model,where cluster bonds were assumed
to be given in terms of lateral pair bonds of strength Eb; when defect trapping is involved, it
was characterized by a single, additive, trapping energy Et . However, as mentioned earlier,
this is not an inherent restriction: provided we know the energies E j of all j -clusters to be
considered as potential critical clusters, then the calculation can be performed explicitly. The
energy calculations of [30] for all such clusters Pdn , for n up to 4, makes such a prediction
worthwhile. We are not looking here for exact agreement with experiment, because inputting
specific but uncertain (energies/kT ) into exponents is bound to give quite large variations in
the numerical predictions. For the same reason, we round the energy values to the nearest
0.05 eV.

Since the publication of [5] and [6], the relevant nucleation density program has been
converted from Fortran into MatLab® 6.5, as described elsewhere [10]. This makes no
difference in principle, but graphic output can be inspected in real-time, and the code is more
user-friendly. In particular, all inverse temperatures (T −1) and all cluster sizes ( j) considered
can be addressed simultaneously as a single matrix in one-line statements. Given that the
defect nucleation program starts from the solution for the density on the perfect substrate, and
is iterated to the defective substrate solution, one can easily follow how the density values
are changing, and where one might wish to alter convergence parameters. The T −1 range,
density of T −1 points, j -clusters considered, energies and lateral bond parameters (b j) are
all specified in a single input file. General binding energy values for the various clusters are
simply included by non-integral values of b j .

Otherwise, all the features of the previous calculation, including the Einstein model of
vibrations, with the same frequency factors, appropriate for bulk Pd, are preserved. Equally,
these pre-exponential parameters can be easily changed to judge the extent that such minor
parameters influence the predicted nucleation density.

4.2. Nucleation predictions for Fs, F+
s and divacancy traps

Figures 4–6 show the high-temperature region of the Arrhenius plots, for the same T −1 range
as figure 3, to explore the predictions for the Fs, F+

s and divacancy traps. These figures show
the effect of the diffusion energy in the range 0.2–0.4 eV in steps of 0.05 eV, but with all other
energies as calculated [28, 30] for Pd, Pd2 and larger clusters trapped at the various centres.
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Figure 4. Predictions using Fs trapping parameters for Pdn clusters (n = 1–4) and adsorption
energy Ea from [28, 30]: (a) clusters considered, including two types of trimer [30] (colour
online); (b) nucleation density and i-sizes as a function of 1000/T , with parameter Ed. See
text for discussion.

The clear result from figure 4 is that trapping at the Fs centre is insufficiently strong to
reproduce the high-temperature experimental results, essentially due to the small calculated
trapping energy E2t = 0.57 eV given in table 4. At low temperatures, the critical nucleus size
i = 1, then 2 (earlier for smaller Ed), but the predicted density curves fall away abruptly from
the constant trap density once i = 3. In the calculation for figure 4, we used E2t = 0.65 eV;
the binding energy of trapped Pd3 (with respect to trapped Pd plus two free adsorbed Pd atoms)
was taken as 1.40 eV. Pd4 is stable throughout the T −1 range shown, with a corresponding
binding energy of 2.8 eV [30]. As seen in table 4, the single Pd adatom is calculated to be
trapped in the Fs centre with the very high trapping energy of ∼2.6 eV; two values have been
used for figure 4, 2.60 and 1.40 eV; even the smaller of these is sufficient to ensure negligible
de-trapping even at the highest temperatures illustrated.

On the other hand, figure 5 shows remarkable agreement with experiment for trapping at
the F+

s centre. Here we have preferred the value 1.22 eV for the trapped dimer from the periodic
model [30, table 2], to the embedded cluster value 0.91 eV given in table 4. The additional
energies of trapped Pd3 and Pd4 were estimated as 0.87 and 1.54 eV respectively [30, tables
1 and 3]. The calculations for figure 5 used the sums of these values rounded to the nearest
0.05 eV, namely 1.20, 2.05 and 3.60 eV for trapped Pd2, Pd3 and Pd4. Curves are presented
for two trapping energies of the Pd monomer, 1.20 and 1.40 eV; the former is close to that
calculated in [28] by the embedded cluster method, and the latter by the periodic model [30,
table 2]. It can be seen that these ‘predictions’ form an excellent fit to the experimental data,
with the diffusion energy Ed between 0.3 and 0.4 eV; that this is identical to a previous DFT
value 0.34 eV [28] must be considered fortuitous, as discussed in section 4.3.
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Figure 5. Predictions using F+
s trapping parameters for Pdn clusters (n = 1–4) and adsorption

energy Ea and two values of the trapping energy Et from [28, 30]: (a) clusters considered, including
two types of trimer, F1 (left) and F2 (right) [30] (colour online); (b) nucleation density and i-sizes
as a function of 1000/T , with parameter Ed. See text for discussion.

The implications of trapping by divacancies are illustrated in figure 6. Here we have a
moderately trapped Pd monomer with Et = 1.64 eV from table 4 [28], rounded to 1.65 eV in
our calculation here. Using rounded published values [28, 30], namely 1.70, 2.35 and 3.40 eV
for Pd2, Pd3 and Pd4 trapped at the divacancy, we find that the break from the constant trap
density corresponds to i = 4, and calculated curves are slightly steeper than in figure 5; as
a consequence the experiments are not quite so consistent with a unique value of Ed; but
the divacancy is certainly not ruled out as a possible candidate from these comparisons with
experiment.

On figures 4–6 the further fall-off at the highest temperatures is due to re-evaporation,
Ea = 1.35 eV, in line with the calculated values of the adsorption energy on the terrace in both
tables 3 and 4 [18, 20, 28]. Some experimental values deduced for this quantity are lower,
around 1.0 eV [2, 32]. But such a low value has a dramatic influence on the prediction if all
other values are kept the same. This feature is shown on figure 6, where the near vertical fall
of the dashed curves corresponds to the onset of incomplete condensation combined with a
large value of i � 4.

With only four clusters included in the prediction, it is not convincing that the critical
size i remains equal to 4 up to the highest temperatures studied. In this situation there are
two possible ways forward: either we investigate in detail the energies and other properties
of n = 5, 6, etc Pdn clusters, or we see what binding energy such clusters would need to be,
to change conclusions. This latter approach has been taken with n � 12, where all clusters
above n = 4 have an additional constant binding energy �E . We find that i = 4 remains if
�E � 1.6 eV, but for �E � 1.5 eV the critical size grows to i � 12 at the highest temperatures
shown in figure 6.
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Figure 6. Predictions using divacancy trapping parameters for Pdn clusters (n = 1 to 4) [28, 30],
with additional energies �E = 1.6 eV for n = 5–12: (a) clusters considered explicitly [30]
(colour online); (b) nucleation density and i-sizes as a function of 1000/T , with parameter Ed.
The trapping energy Et = 1.35 eV, with two values of Ea, 1.35 eV from [18, 28], and the lower
value 1.0 eV to illustrate the dramatic effect of incomplete condensation when all other parameters
are kept the same. See text for discussion.

These values of �E are reasonable, but subtle, in that the sublimation energy L of bulk
Pd is known from vapour pressure data [33] to be L = 3.79 ± 0.1 eV/atom, and each
condensing atom in the repeatable step of the fcc lattice is six-fold coordinated; this means
that the average ‘energy per bond’ in bulk Pd is ∼0.63 eV. In our case the additional binding
energy per Pd atom in the cluster is typically three-fold coordinated with the cluster, or is two-
fold coordinated and also adsorbed on the substrate. Decreasing additional binding energy
with increasing coordination is typical of metallic binding [34], so the condition on �E is
�E � L/2 − Ea = 0.55–0.9 eV in the first case (for the limits on Ea, 1.0 � Ea � 1.35 eV)
and �E � L/3 = 1.25 eV in the second. A more realistic figure for three-fold coordination,
based on an analogy with Ag/Ag(111) [35], would be �E = 0.75L − Ea = 1.5–1.85 eV or
�E = L/2 = 1.9 eV in the second case. The clear implication is that adsorption energies in
this range lead to a competition between initial 2D and 3D growth that depends on details of
small cluster free energies and associated kinetics.

4.3. Entropic effects on nucleation density predictions

Our assumption in the analysis presented so far is that energies dominate the predictions, and
that pre-exponential factors only need to be approximately correct for meaningful predictions
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Figure 7. Predictions illustrating the effects of changes in pre-exponential factors, using calculated
trapping parameters for Pdn clusters (n = 1–4 from [28, 30]): (a) inclusion of statistical weights
C j = [1 0.5 3 5] into the divacancy model of figure 6. All other parameters remain the same,
including the value of �E for n > 4; (b) inclusion of statistics C j = [1 5 10 5], and changed
frequency factors into the F+

s model of figure 5, for two values of the adsorption energy Ea = 1.35
and 1.20 eV, all other parameters remaining the same. See text for discussion.

to be made. Nonetheless, the nucleation model used also contains (a) statistical weights
C j for small clusters j that can have more than one configuration [7, equation 2.7]. Thus
we can extend the simplest idea of a dominant cluster configuration with energy E j , with
a sum over configurations m,

∑
m C j (m) exp(E j(m)/kT ), replacing the single exponential

C j exp(E j/kT ). By estimating the configurational entropy, we can come up with revised
effective values for C j .

The model also contains atomic vibration frequencies, so it can also give the equilibrium
vapour pressure at high temperatures [7, section III B]; in figures 4–6 the vibration frequency,
ν = νb is that appropriate to bulk Pd sublimation, 3 THz. When applied to adsorbed layers
we have in principle three vibration frequencies that can all be different. We have made some
predictions here with changed pre-exponential factors, including reducing the (lateral) diffusion
frequencies νd while fixing the adsorption frequency (νa) so as to agree with the calculated
vertical vibration frequency [18, 28]; the remaining degrees of freedom (e.g. motions within
clusters) are kept at the bulk frequency νb. The mean effect of such changes is to shift predicted
diffusion energies by up to 0.05 eV in the direction of smaller values, as illustrated in figure 7.
These changes are thus interesting, but typically considerably smaller than changes in energies,
especially when the uncertainty in energy values is ∼±0.1 eV.

Figure 7(a) illustrates the effect of statistical weights for clusters up to n = 4 for the
divacancy model of figure 6. Here we have used C j = [1 0.5 3 5] as a vector for the
corresponding four clusters, and 10 for the larger clusters n � 12. The trapped Pd2 is
entropically disfavoured, due to the constrained geometry in the divacancy, whereas the lowest
energy Pd3 trimer is somewhat favoured, due to configurational weight and a possible extra
rotational degrees of freedom; similar considerations yield a moderate extra entropy for the
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Pd4 tetramer. The details are outlined in the appendix, but here we only want to extract the
approximate size of the effect on the nucleation density. From figure 7(a) we can see that these
entropic effects increase the nucleation density somewhat, and experimental agreement would
require Ed to be reduced by �Ed ∼ 0.03 eV. This is less than the accuracy of our model and
so does not change our conclusions.

Figure 7(b) illustrates the similar effects for the F+
s centre model of figure 5. Here we have

used C j = [1 5 10 5] as a vector for the corresponding four clusters. Now the trapped Pd2 is
entropically favoured, due to the open geometry (see the appendix), and the two different Pd3

trimers with similar energy that may have substantial entropy; the Pd4 tetramer is similar to the
previous example. In addition we have changed the adsorption frequency νa = 4.0 THz, and
lowered the diffusion frequency νd = 0.8 THz, while keeping νb = 3.0 THz (the default value
for all these frequencies before). These entropic effects move the comparison with experiment
by �Ed ∼ 0.05 eV in the complete condensation regime, but have a somewhat larger effect
on the onset of incomplete condensation. This means that the value of the adsorption energy
needs to be reduced by �Ea up to ∼0.15 eV for agreement at high temperature; the reason is
simply that the adsorbed layer is stabilized by entropic effects related to νd that are contained
in the original model [7, section III B]. However, both of these effects are at the edge of the
accuracy of our model and so do not change our qualitative conclusions. Nonetheless, we can
see from figures 6(b) and 7(b) that our model does not support a value of Ea as low as 1.0 eV.

5. Discussion and conclusions

We have discussed recent calculations of adsorption, diffusion, and trapping of some metal
adatoms and small clusters on MgO(001), and used these calculations as input for rate equation
models of the nucleation density of small metal particles, primarily at defect sites. As a result
of comparison with a single experimental data set for Pd/MgO(001) [6], we can effectively
rule out the Fs centre as the nucleating agent, and we obtain impressive agreement with
nucleation on the F+

s and divacancy centres, based on a very extensive set of calculations
for Pd/MgO(001) [28–30]. This means that both centres must be considered as candidate
defects for nucleation on the MgO(001) surface in general. Of course, this does not rule out
the effectiveness of the Fs centre at lower temperatures, if the defect were present, but the
implication is that it was not the dominant defect in relation to reference [6].

This paper also opens the way for other experiment–theory comparisons of metals on
MgO and other (ionic) crystal surfaces. The limiting requirement is that good data sets of
nucleation density are available, and that reliable energy calculations have been, or can be,
performed on several small clusters. Ironically, there is already a large data set available for
the same metal combination as studied here, Pd/MgO(001) [2, 32], which cannot be fitted with
the same defect parameters, but which parallels the behaviour of Au/MgO(001) [36]. Since
the only real difference between these studies and our experimental data set [6] is the method
of surface preparation, it is now logical to explore whether there are other surface defects, and
possibly other surface processes such as dimer mobility, that could explain these reproducible
results. A recent theoretical study has made a serious start in this direction [37].

There are of course other developments in the modelling of nucleation and growth at defect
sites in addition to those presented here. The model given is a mean field model, aimed primarily
at identifying important energies,but also being able to discuss entropic effects as in section 4.3.
In parallel, other authors are developing descriptions of cluster size distributions [11, 38],
which may be used to extract further information from experiment–theory comparisons in
future. Such developments may be useful if sufficiently detailed experimental results and ab
initio calculations become available.
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Appendix. What is a reasonable configurational entropy for small clusters?

We are interested here in rough order of magnitude arguments. We already have Einstein
vibrations in our model [7], but the additional entropy due to position may perhaps be as much
as in a liquid. A typical liquid entropy, for example for bulk Pd, is Lm = Tm�S, so we
can work out �S and apply it at the condensation temperature. Honig and Kramer [33] give
Lm = 4.2 kcal mol−1 = 4200/1.987 K/atom, and Tm = 1825 K. So Lm = 2114 K/atom =
0.182 eV, and �S = 2114/1825 = 1.16 in Boltzmann constant units; this value is in the
typical liquid range, 1–2 k/atom.

Therefore for monomers we already have all the degrees of freedom, unless we have a 2D
gas, but we can investigate the effect of reducing νd, as in figure 7(b). The value, νd = 0.8 THz,
was estimated by assuming the potential along the 〈110〉 jump direction is a sine curve with
amplitude Ed/2, based on Ed = 0.25 eV; the consequences are spelt out in the text.

For dimers in the F+
s centre we should have C2 = 4, from the geometry of the lattice,

and exp(�S/k) = exp(1.16) = 3.19. So C2 in the range 4–8 is certainly possible, and we
choose 5 for illustration. For the divacancy, there is only one configuration, and that may
have restricted, i.e. high-energy, vibrations. So C2 may well be <1, and we choose 0.5 for
illustration.

For C3, we know we have two trimer configurations on an F+
s centre that are low-lying in

energy (F1 and F2 [30, figure 5], as shown here in figure 5(a)), and each of these has several
possible equivalent arrangements. The F1 centre must have four configurations and the F2,
four also. So C3 = 8 from this argument and is ∼(3.19)2 = 10.2 from the liquid argument; we
choose C3 = 10 for illustration. For the divacancy, the energies of different configurations are
dissimilar, so we consider D1 only [30, figure 4], shown here in figure 6(a). From symmetry
(mirror about the divacancy axis) this looks like C3 = 2, anyway not very large; the trimer
could have a measure of free rotation about one axis. This gives an additional �S = k/2, and
so C3 = 2 exp(0.5) = 3.3. We choose C3 = 3 for illustration.

For C4, we again have rather different energies, so the F+
s centre (F1) has C4 = 4,

whereas the liquid model would give (3.19)3 = 32.5. But given the approximate symmetry
of this cluster, it looks like free rotation may be possible; if there is not free rotation, then the
smaller value may be better. So let us assume we have free rotation of a triplet of atoms around
a single axis, and hence C4 = 4 exp(0.5) = 6.6. For the divacancy, D1 and D2 [30, figure 8]
are close in energy, so consider both; there are just two conformations of each by symmetry.
Both configurations have one atom close to the Mg ion vacancy and tend to avoid the O ion
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vacancy. So let us assume we have free rotation of a triplet of atoms around a single axis.
This gives C4 = 2 ∗ 2 exp(0.5) = 6.6 also. Anything around this value is reasonable, and we
choose C4 = 5 for illustration.
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